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Abstract 

Empirical analysis of collusive regimes typically requires the 
construction of structural econometric models, with explicit ties to theoretical 
models of firm behavior in equilibrium. To that end, theory often elicits a 
wealth of important information regarding the structural parameters, 
information that is indispensable in accurately identifying desired 
phenomena, but nevertheless, is inevitably disregarded by classical 
techniques. Motivated by these considerations, the paper demonstrates how 
Bayesian methods may be used to better incorporate such structural 
knowledge through prior probabilistic beliefs. As a result, Bayesian posterior 
inference provides a clear and precise empirical interpretation of collusive 
behavior and cartel stability. 
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1. Introduction 

Porter (1983) was one of the first studies to empirically examine collusive 
behavior under a particular equilibrium assumption of dynamic, oligopolistic 
behavior. Specifically, the empirical model is derived under the assumption that 
firms behave according to the Green and Porter (1984) model of collusive regimes, 
where unobserved periodic demand shocks lead to temporary, perfectly 
competitive regimes. This results in a simultaneous equation switching regression, 
which Porter (1983) estimates using a Maximum Likelihood procedure. 
Consequently, the results are used to argue in favor of the existence of collusion 
during the sample period, by rejecting the null hypothesis of “no regime switching” 
through a Likelihood Ratio test. 

An analogous Bayesian estimation may be interesting for several reasons. 
First, the theoretical framework warrants significant prior information about the 
structural parameters that Maximum Likelihood estimation cannot incorporate. 
This is particularly significant in the Porter (1983) exercise because it leads to 
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insensible MLE estimates, such as for example market demand elasticities less than 
one (in absolute value). In addition, simulated draws from the joint posterior 
distribution allow for an extended analysis of the regime-switching model, and 
further facilitates straightforward model comparison through the computation of 
Marginal Likelihoods and Bayesian Posterior Odds Ratios. 

The data used in the study describes the operations of the Joint Executive 
Comittee (a railroad cartel) for the period 1880-1886. Observations are market-
level prices and quantities for each year in the sample period, along with covariates 
used to control for competition from outside markets as well as the market 
structure of the cartel itself. Aside from Porter (1983), this dataset has been 
analyzed extensively in the literature under various applications and is familiar to 
most industrial organization economists (e.g. Ripley, 1906; Ulen, 1979; Binder, 
1988; Prager, 1989; Ellison 1994). The primary motivation, as in most utilizations 
of this example, is that the data characterizes an explicit account of the operations 
of a known cartel. Summary statistics are provided in Table 1; for a more extensive 
description of the JEC and the related data set, please refer to (Gilchrist, 1960; 
Ulen, 1979; Porter, 1983). 

Table 1 
Summary Statistics 

 mean std dev min max 
GR 0.2465 0.0665 0.1250 0.4000 

TQG 25,384 11,633 4,810 76,407 
LAKES 0.5732 0.4954 0 1 

PO 0.6189 0.4864 0 1 
 

2. Estimation 

This section derives and analyzes a Bayesian version of the regime-switching 
simultaneous regression. The primary interests for this arise from the fact that the 
specified model asserts significant prior information about the structural 
parameters, and that draws from a posterior distribution seem to be more 
accomodating in answering some of the questions in this paper, in comparison to 
point estimates. 

As usual, to estimate a Bayesian model, we begin by constructing a 
likelihood and joint prior distribution. The construction of the likelihood is, in 
principle, identical to that of the Maximum Likelihood estimation technique 
presented in the paper. However, in order to facilitate the ensuing MCMC 
algorithm, we derive a slightly different representation. Consequently, consider the 
following definitions:  
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 The simultaneous equations switching regression model can be written as:  
 ttttt MLyy 1320211 = εαααα +′++−                                                       (1) 

 tttttt MISyy 24320112 = εβββββ +′++′+−                                           (2) 

or equivalently,  
 tttt xxy εδδ +′′Γ′ ] [= 2211                                                                              (3) 

For notational convenience, let T
ttttI MSLX 1=},,{=−  (the set of independent 

variables). It follows, then, that the likelihood function is:  
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where mn×φ  denotes the Matric-Normal distribution. Further note that:  

 ),], [|(),,,,|( 1
22112

−
×− ΣΓ′∝ΓΣ TTI IxxyIBXyp δδφ                              (5) 

 ),|)()((= 2 TTT IXByvecI ⊗Σ⊗Γφ                                                            (6) 

where nφ  denotes the Multivariate Normal distribution. We will exploit this 

relationship in deriving the conditional distributions for the MCMC algorithm. 
The prior information in this model is described by a joint distribution over 

all the parameters (including hyper-parameters), which we decompose into the 
hyper-prior and joint prior distributions, respectively, as:  

)|,,,,,,,,,()(=),,,,,,,,,,( 1403014030 λββααλλββαα TT IIppIIp KKKKKK ΣΣ  (7) 

Let 1211 =,= βγαγ −− . The joint prior distribution, )| ( λ⋅p , can be further 
decomposed as:  

 )|,,(=)|,,,,,,,,,( 114030 λλββαα TT IIpIIp KKKK Σ                       (8) 

 ),,,|( 1 λTIIp KΣ×                                                                                      (9) 

 ),,,,|,( 121 λγγ TIIp KΣ×                                                                         (10) 

 ),,,,,,|,( 12121 λγγδδ TIIp KΣ×                                                               (11) 

The prior distribution for regime types, tI , is assumed in Porter (1983) to be  

 )(| λλ BernoulliI
iid

t :                                                                                  (12) 

Furthermore, to construct (10) and (11), we consider the assumptions 
imposed by the model. First, note that 1α  and 11 +β  are the constant elasticities of 
demand and cost, respectively. Since the industry marginal revenue is given by 

|)|1/(1= 1α−tit pMR  (for a downward-sloping demand curve), it must be true 

that 1|>| 1α  in order for marginal revenue to be positive. This fact, which is 
pointed out by Porter (1983) explicitly, is contradicted by the subsequent maximum 
likelihood estimate, 0.8=ˆ1 −α . This, however, is a troublesome result since it 
inhibits our interpretation of other parameter estimates. That is, how do we 
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attribute and estimated shift in quantity to a collusive regime if our estimate of the 
demand elasticity implies that optimal output quantity should always be zero? One 
way of describing this puzzling result is that MLE, in this case, puts too much of 
the burden of inference on the data. More specifically, consider the alternate 
perspective on data as a limited resource, which we consult in search of an answer 
to our research question. Even if we just eliminate implausible answers prior to 
consulting the data, we allow the data to focus on distinguishing among only 
plausible solutions. The latter is further extended by describing the alternative 
possible outcomes with a probability distribution. Therefore, prior knowledge 
allows us to exploit the data to a greater extent. This is especially true for the 
exercise at hand since a significant portion of the prior knowledge is asserted by 
the model, but cannot be identified by the data implicitly. 

In addition to restricting the support of 1α , the model similarly requires that 

1>11 +β  to ensure that marginal costs are positive and increasing, and therefore, 
that an equilibrium exists. Consequently, we assign the following prior distribution:  

)]0 [,] [1,,50]0.5 ([1.05=),(=),,,,|,( 2521121 ′∞′∞−′−Σ IMTtpIIp T γγλγγ K   (13) 

where ),,,(5 baSmMTt  denotes a Multivariate Truncated t distribution with 5 

degrees of freedom, mean, m , scale, S , vector of lower bounds, a , and vector of 
upper bounds, b . Note that the independence of 21,γγ  from TII ,,1 K  follows 
from the assumption that elasticities do not change across time (as specified in the 
model). Porter (1983) also notes the following relationships among the remaining 
parameters: 
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3)  2α  “should be” negative  

To derive the prior distribution of 0β , we begin with the assumption, aai ≈ . 

Intuitively, ia  represents input factor prices and technology parameters for firm i . 

Therefore, our assumption reflects a belief that all the firms in the industry face 
similar production costs and exhibit similar technologies. Furthermore, if 

(0,100)Naln : , then  

,100))(1(=)|(=),,,,,,|( 22201210 flnlnNpIIp T γγγβλγγβ −−Σ K      (14) 

where f  is the total number of firms. Although the number of firms in our sample 
varies across periods due to entry and exit, for the purpose of this exercise we 
simply let 6.84=f , the average number of firms, for all periods. Accounting for 
[2] and [3] above, we also specify the prior distributions:  

 =),,,,,,,|( 12103 λγγββ TIIp KΣ  

 1)))/(((0,=)|( 1113 −γγγβ lnUp                                                              (15) 

 =),,,,,,,,|( 121302 λγγββα TIIp KΣ  
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 2,100)(=)( 2 −Np α                                                                                  (16) 

 =),,,,,,,,,|,,,( 1213024230 λγγββαββαα TIIp KΣ  

 ),100(0=),,,( 29294230 INp ββαα                                                           (17) 

 =),,,|( 1 λTIIp KΣ  

 )(=)( 210 IIWp Σ                                                                                        (18) 

The prior distribution (17) describes prior beliefs over shifts in the intercepts 
attributed to “monthly” and “structural” dummies. Our prior over these parameters 
is relatively flat and asserts stochastic independence. The prior distribution of Σ  
reflects a belief that t1ε  and t2ε  are uncorrelated. Note that (14)-(18) fully describe 

(11), and assuming that  
 (0,1)U:λ                                                                                                 (19) 

completes the full prior specification. 
The model is estimated with a Gibbs Sampling algorithm by iteratively 

sampling from conditional distributions (for further details regarding Bayesian 
posterior sampling techniques, see Gelman et al., 2003; Koop, 2003). In particular, 
we sample from five conditional distributions:  

 1) yXIB I ,,,,,| −ΣΓ λ   

 2) yXIB I ,,,,,| −ΓΣ λ   

 3) yXIB I ,,,,,| −ΣΓ λ   

 4) yXBI I ,,,,,| −ΣΓ λ   

 5) yXIB I ,,,,,| −ΣΓλ   
These distributions are straightforward to derive from the prior and likelihood 

as follows:  
 ),,,( )( )|( )|(),,,,,|( 423021320 ββαααγβγβλ ppppyXIBp I ∝ΣΓ −  

 ),|)()((2 TTT IXByvecI ⊗Σ⊗Γ×φ  

 1))])/(([0,,,(= 113
11 −∈−− γγβ lnDdDMTN                                           (20) 

where:  
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1
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1
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 ] 0 [= 1320 ′′′ ιιBv  (23) 

 ;]0 1))/(( 0 2 [0= 181113 ′′−′− γγµ lnB                                                        (24) 

We sample B  by first sampling 3β  from a univariate truncated normal 

distribution and the rest of the parameters from the appropriate multivariate normal 
distribution, given the draw of 3β . Subsequently, we derive the conditional 

distribution for Σ  as:  
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 ))((= 1
210

−
+ ′+ eeIIW T                                                                                (25) 

 ] [= 2211 δδ xxye −                                                                                      (26) 

where )(SIWη  denotes an Inverted Wishart distribution with η  degrees of 

freedom and scale S , which can be easily sampled form using a standard statistics 
software package. Sampling ),( 21 γγ , on the other hand, is not trivial and requires 
a Metropolis-Hastings step. That is, the conditional distribution:  

 )|( )|( ),(),,,,,|,( 13202121 γβγβγγλγγ pppyXIBp I ∝Σ −  

 ),|)()((2 TTT IXByvecI ⊗Σ⊗Γ×φ                                                          (27) 
does not have a closed form that can be easily sampled from. Hence, we construct a 
jumping distribution to sample candidate draws from and employ an accept/reject 
decision rule. A reasonable jumping distribution for this problem is:  
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where )ˆ,ˆ( 11 βα  and W  are the 3SLS estimates and asymptotic covariance matrix, 
respectively, from the regression:  

 1211 = να +ye                                                                                              (29) 

 2112 = νβ +ye                                                                                             (30) 

where eee =] [ 21  from (26). Note that ),( 21 γγJ  is not proportional to the 
mutivariate truncated t distribution, although it is quite similar. We decide whether 
or not to accept the new draws with the following procedure:  
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Finally, we sample the remaining parameters, λ,,,1 TII K , from the 
following distributions:  
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The above MCMC algorithm was run for 70,000 iterations, with the first 
20,000 draws discarded as burn-in. The remaining 50,000 draws are assumed to be 
sampled from the joint posterior distribution and are summarized in table 2. Note 
that the marginal posterior distributions described by the draws are fairly close to 
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the distributions of the ML estimates reported by Porter (1983). In fact, the only 
significant difference appears in the estimate of 3β , our main parameter of interest. 

In particular, note that the posterior distribution asserts 
0.25%=),|0.568( 3 yXPr I−≤β , which is the region containing the MLE 

estimate 0.545=ˆ
3β . This difference can be, at least in part, explained by the 

parameter restrictions imposed in the Bayesian estimation, since we are explicitly 
forcing 0>3β  and 1|>| 1α . Meaningful interpretation of the difference is 

difficult, however, since interpretation of 3β̂  is unclear given that 0.800=ˆ1 −α  

implies firms are minimizing profits, if an equilibrium in the given model exists. 
 

Table 2 
Estimation Results 

    Summary of Posterior Distribution )y,IX|,(p −βα   

 mean std 
dev 

min 0.25% 20% 40% median 60% 80% 97.5% max 

0α  7.965 2.679 -3.698 2.696 5.699 7.296 7.973 8.629 10.213 13.211 17.380 

1α  -1.160 0.083 -1.509 -1.337 -1.232 -1.175 -1.153 -1.131 -1.085 -1.021 -1.000 

2α  -0.387 0.127 -0.867 -0.631 -0.494 -0.419 -0.387 -0.355 -0.281 -0.137 0.110 

0β  -4.019 2.670 -14.251 -9.259 -6.232 -4.683 -4.033 -3.370 -1.782 1.174 7.495 

1β  0.259 0.026 0.194 0.216 0.237 0.248 0.255 0.263 0.283 0.317 0.335 

2,1β  -0.198 0.044 -0.435 -0.288 -0.234 -0.208 -0.197 -0.187 -0.162 -0.116 -0.040 

2,2β  -0.227 0.059 -0.483 -0.345 -0.276 -0.241 -0.226 -0.211 -0.178 -0.115 0.002 

2,3β  -0.390 0.048 -0.610 -0.488 -0.429 -0.401 -0.389 -0.377 -0.350 -0.300 -0.223 

2,4β  -0.132 0.117 -0.552 -0.328 -0.221 -0.165 -0.141 -0.116 -0.055 0.098 0.731 

3β  0.624 0.030 0.495 0.568 0.599 0.616 0.624 0.631 0.649 0.684 0.758 

  
In addition to the parameters reported in table 2 (and table 3 in Porter, 1983), 

it maybe of interest to examine the posterior probabilities of TII ,,1 K . Figure 1 

depicts the predicted tI  as well as the posterior probability ),|1=( yXIPr It −  for 

each period in the sample. Note that our predictions are fairly consistent with the 
predictions derived by Porter (1983) using the Keifer Algorithm. Another point of 
interest evident from the figure is that in the later periods with more frequent 
(predicted) regime switches, the posterior uncertainty is relatively higher. 
Incidentally, this is also the period of highest market concentration (8 firms), which 
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perhaps indicates that competition not only makes cooperative behavior more 
difficult in general, but also makes it more difficult to detect. 

 

 
Fig. 1. Predicted tI  and Posterior Probabilities ),|1=( yXIPr It −  

 
3. Inference 

3.1. The “collusive” regime sets static monopoly prices 
If the collusive regime sets static monopoly prices, then we should observe 

that 0=))/(1(= 311 βγγ −−Λ ln . While, “hypothesis testing” doesn’t exactly make 

sense in the Bayesian context, we can perform an analogous exercise by examining 
the posterior distribution of Λ , which is easily approximated using the simulation 
draws. Specifically, we can examine the 95% Highest Probability Density (HPD) 
of Λ  and check whether 0=Λ  lies in the posterior HPD. Constructing a 95% 
HPD given draws of Λ  is straightforward using the following procedure: 

 1) approximate the support of ),|( yXp I−Λ  with a fine grid of points iΛ ; 

 2) approximate the posterior density at each iΛ  using non-parametric 

techniques;  
 3) sort the grid in descending order by density values;  
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 4) the first m  sorted grid points whose densities sum to 0.95 represent the 
95% posterior HPD.  

Using this algorithm, we find that the 95% HPD for Λ  is [0.5806, 2.8308], 
thus reflecting our posterior belief that it is unlikely for the collusive regime to 
have set static monopoly prices. This confirms the Porter (1983) prediction that 
“cooperative period prices exceed those implied by competitive price setting, but 
are less than those consistent with static joint profit maximizing.” The HPD is 
depicted graphically with the shaded region in figure 2. 
 

 
Fig. 2. Approximated Posterior Density and 95% HPD Interval for Λ  

  
 
3.2. There is only one regime in the data 

This hypothesis can be easily tested using the posterior draws of TII ,,1 K , 

removing the need to examine 3β . That is, using the simulated draws we can 

construct the posterior distribution for the number of regime changes, 

||= 12= −−∆ ∑ tt

T

t
II . Since ∆  is discrete, we can explicitly answer the question, 



 94

“What is the probability that no regime changes occured?”, by estimating the 
probability ),|0=( yXPr I−∆ . Table 3 contains the posterior probability mass 

function, ),|=( yXdPr I−∆ . Clearly, our posterior belief asserts that 

0=),|0=( yXPr I−∆ . In fact, we conclude that at least 12 regime changes 
occured during the observed period, with the most probability around 22-24 regime 
switches. Furthermore, note the fact that the pmf heavily favors an even number of 
regime change is consistent with the posterior predictions that test period began 
and ended with cooperative regimes. 

 
4. Conclusion 

The Bayesian procedure and analysis described in the paper compliments the 
empirical analysis of dynamic oligopoly structure of Porter (1983) by incorporating 
significant information into the estimation procedure and offering a more extensive 
inference. In addition, the Bayesian framework may be extended to accommodate a 
more robust econometric model. For example, it is possible to estimate a similar 
model without the strict imposition of particular functional forms of supply and 
demand. 

Consider, for example, the type of market demand assumed in the model. The 
constant demand elasticity reflects a CES utility function for the representative 
consumer, which may be regarded as quite restrictive in the sense that even if we 
accept that each consumer exhibits a CES utility, the individual demands would not 
aggregate to a constant elasticity market demand unless each consumer has exactly 
the same preferences. However, modelling a demand function without a constant 
elasticity (e.g. quasi-linear utility) is extremely difficult. Even if we provide a 
better justification for the alternative market demand, a constant elasticity of 
market demand is a crucial assumption in the aggregation of individual firms’ 
pricing decisions. Thus, changing the elasticity of the demand curve also affects the 
industry supply curve. It is possible, in that case, that the new demand/supply 
specification might entirely explain market price fluctuations in terms of demand 
shifts or market structure changes (e.g. entry and exit). 

Even if we were able to generalize the functional form of the demand curve 
in a way that nested several possible demand specifications, including constant 
demand elasticity, estimation through Maximum Likelihood of this type of model 
would be difficult. Bayesian Model Averaging, on the other hand, allows for a 
straightforward way of incorporating different types of models, even those that 
cannot be nested. Such procedures, therefore, can be easily used to obtain more 
robust estimates. 
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Table 3 

Posterior Probability Mass Function ),|=( yXdPr I−∆  

value Pr value Pr value Pr 
12 0.0003 24 0.1896 36 0.0049 
13 0.0000 25 0.0018 37 0.0001 
14 0.0064 26 0.1512 38 0.0023 
15 0.0001 27 0.0011 39 0.0001 
16 0.0285 28 0.1055 40 0.0010 
17 0.0004 29 0.0008 41 0.0000 
18 0.0744 30 0.0602 42 0.0003 
19 0.0009 31 0.0004 43 0.0000 
20 0.1376 32 0.0309 44 0.0001 
21 0.0012 33 0.0003 45 0.0001 
22 0.1856 34 0.0129 46 0.0001 
23 0.0014 35 0.0001 48 0.0001 
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