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Abstract

Empirical analysis of collusive regimes typicallyequires the
construction of structural econometric models, veiplicit ties to theoretical
models of firm behavior in equilibrium. To that erlbeory often elicits a
wealth of important information regarding the stw@l parameters,
information that is indispensable in accurately ritdfing desired
phenomena, but nevertheless, is inevitably disigr by classical
techniques. Motivated by these considerations ptyger demonstrates how
Bayesian methods may be used to better incorposateh structural
knowledge through prior probabilistic beliefs. Asesult, Bayesian posterior
inference provides a clear and precise empiricaélipretation of collusive
behavior and cartel stability.
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1. Introduction

Porter (1983) was one of the first studies to eiwglly examine collusive
behavior under a particular equilibrium assumptmidynamic, oligopolistic
behavior. Specifically, the empirical model is ded under the assumption that
firms behave according to the Green and Porter4)18tbdel of collusive regimes,
where unobserved periodic demand shocks lead topaeary, perfectly
competitive regimes. This results in a simultanesgisation switching regression,
which Porter (1983) estimates using a Maximum liledd procedure.
Consequently, the results are used to argue irr falvthe existence of collusion
during the sample period, by rejecting the nulldtyesis of “no regime switching”
through a Likelihood Ratio test.

An analogous Bayesian estimation may be interedtingseveral reasons.
First, the theoretical framework warrants signific@rior information about the
structural parameters that Maximum Likelihood eation cannot incorporate.
This is particularly significant in the Porter (ID8exercise because it leads to
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insensible MLE estimates, such as for example niaémand elasticities less than
one (in absolute value). In addition, simulatedwdrarom the joint posterior
distribution allow for an extended analysis of tlegime-switching model, and
further facilitates straightforward model companshrough the computation of
Marginal Likelihoods and Bayesian Posterior Oddtd3a

The data used in the study describes the operatibtise Joint Executive
Comittee (a railroad cartel) for the period 188@@.80bservations are market-
level prices and quantities for each year in thea period, along with covariates
used to control for competition from outside maskets well as the market
structure of the cartel itself. Aside from PortdO83), this dataset has been
analyzed extensively in the literature under vasiapplications and is familiar to
most industrial organization economists (e.g. RiplE906; Ulen, 1979; Binder,
1988; Prager, 1989; Ellison 1994). The primary waiton, as in most utilizations
of this example, is that the data characterizesxgficit account of the operations
of aknowncartel. Summary statistics are provided in Tabl®da more extensive
description of the JEC and the related data segsgl refer to (Gilchrist, 1960;
Ulen, 1979; Porter, 1983).

Table 1
Summary Statistics
mean std dev min max
GR 0.2465 0.0665 0.1250 0.4000
TQG 25,384 11,633 4,810 76,407
LAKES 0.5732 0.4954 0 1
PO 0.6189 0.4864 0 1

2. Estimation

This section derives and analyzes a Bayesian vedithe regime-switching
simultaneous regression. The primary interestgHisrarise from the fact that the
specified model asserts significant prior inforroati about the structural
parameters, and that draws from a posterior digioh seem to be more
accomodating in answering some of the questiortkignpaper, in comparison to
point estimates.

As usual, to estimate a Bayesian model, we beginctystructing a
likelihood and joint prior distribution. The congttion of the likelihood is, in
principle, identical to that of the Maximum Liketibd estimation technique
presented in the paper. However, in order to fatdi the ensuing MCMC
algorithm, we derive a slightly different repressiin. Consequently, consider the
following definitions:

Xit z[ll‘t Mt]’ X’2t :[18{ It Mt']l Y =In Qt! Yo =In Py

(% O _ (1 -o
X_(O ija yt_[yltth]’r_(_lgl 1)

o =la,a,as], 6, =[5 B, Bs Bl B=[0, 5]
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The simultaneous equations switching regressiotietntan be written as:

Yie —A1Yx :a0+a2Lt+Mt’a3+£1t 1)

Yo =BYu =By +S B, + Bsl + ML, + &y (2
or equivalently,

Yo' =%, X 3,] + €, (3)

For notational convenience, 1 _, = {L,,S,M}/, (the set of independent
variables). It follows, then, that the likelihoaghttion is:

-
POYIX, BET 1) =D Bo (Y [ [X40, X 1Y, 1,T'Z7T)

t=1
= G (YI[XG %GI(M ), 14, T'Z7) 4)
where @, denotes thélatric-Normaldistribution. Further note that:
POYIX. BI 1) O, (VT [X0, %0,), 1+, Z7) ()
=@, (T Ol;)vedy)| XBzO1,) (6)

where ¢, denotes theMultivariate Normal distribution. We will exploit this

relationship in deriving the conditional distribaris for the MCMC algorithm.

The prior information in this model is described dyoint distribution over
all the parameters (including hyper-parameters)ickvtwe decompose into the
hyper-priorandjoint prior distributions, respectively, as:

K0 - o521 A= PARG-. B By - B2 -1 1A) (1)

Let y, = —a,,y, = —[,. The joint prior distribution,p({] 1) , can be further
decomposed as:

pP(Ays..o Qg Bose o BanZo s 11 [A) = (e 1 [ A) (8)
X |1y,..., I, A) ©)
XP(Vi ¥y |2,y 17, A) (10)
G T2 PR B (11)

The prior distribution for regime types$,, is assumed in Porter (1983) to be

I 1A+ Bernoulli(}) (12)

Furthermore, to construct (10) and (11), we consithee assumptions
imposed by the model. First, note tlgt and S, +1 are theconstantelasticities of
demand and cost, respectively. Since the industggimal revenue is given by
MR, = p,(1-1/]a,|) (for a downward-sloping demand curve), it musttioe

that |a, [>1 in order for marginal revenue to be positive. Tfast, which is
pointed out by Porter (1983) explicitly, is conticdd by the subsequent maximum
likelihood estimate,a; = —0.8. This, however, is a troublesome result since it
inhibits our interpretation of other parameter resties. That is, how do we
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attribute and estimated shift in quantity toalusive regimef our estimate of the
demand elasticity implies that optimal output qitsgrghould always beerd? One
way of describing this puzzling result is that MLiE,this case, puts too much of
the burden of inference on the data. More spedificaonsider the alternate
perspective on data as a limited resource, whickamsultin search of an answer
to our research question. Even if we just eliminatplausible answerprior to
consulting the data, we allow the data to focusd@tinguishing among only
plausible solutions. The latter is further extendsddescribing the alternative
possible outcomes with a probability distributiofherefore, prior knowledge
allows us to exploit the data to a greater ext&his is especially true for the
exercise at hand since a significant portion of gher knowledge is asserted by
the model, but cannot be identified by the datdititly.

In addition to restricting the support of , the model similarly requires that
B, +1>1 to ensure that marginal costs are positive anctasing, and therefore,
that an equilibrium exists. Consequently, we as#igrfollowing prior distribution:
PO V2 (21 15,4) = P14, 1) = MT([1.05-0.5],501,,[1 —oo', [ 0]) (13)
where MTt,(m,S,a,b) denotes aMultivariate Truncated tdistribution with 5
degrees of freedom, meam, scale,S, vector of lower boundsa, and vector of
upper boundsb. Note that the independence o, y, from I,,...,|; follows

from the assumption that elasticities do not chaaggess time (as specified in the
model). Porter (1983) also notes the following tieleships among the remaining
parameters:

f -1
1) B,=In D=l (5+1)-AiIn [¥ a™]
2) B 0[0In (a/(a, +1))]
3) a, “should be” negative
To derive the prior distribution of3,, we begin with the assumptioa, = a.

Intuitively, & represents input factor prices and technologyrpeters for firmi .
Therefore, our assumption reflects a belief thathed firms in the industry face
similar production costs and exhibit similar teclogies. Furthermore, if
Ina: N(0,100), then

P(Bo [ VirVou 211y 11, A) = P(Bs | V,) = N(In (1= ),) =y, In £,100)  (14)
where f is the total number of firms. Although the numbéfirms in our sample

varies across periods due to entry and exit, ferghrpose of this exercise we
simply let f = 6.84, the average number of firms, for all periods. éuating for

[2] and [3] above, we also specify the prior distitions:
P(Bs | Bor Vi VarZolys i1, A) =

P(B; | 11) =U (0In (y:/(y1 —1))) (15)
P(a, | Bos Bas Vir Vo r Zil s 11, A) =
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p(a’z) = N(—2,100) (16)
P(Qo, 03, B, By | Oy, By, Bas Vis Vo Zo Ly 17, A) =

P(a4: 035 By, B) = N(0,,100 ) 17)
pE|l,....15+,4)=
P(Z) = IW,(15) (18)

The prior distribution (17) describes prior beliefger shifts in the intercepts
attributed to “monthly” and “structural” dummiesuprior over these parameters
is relatively flat and asserts stochastic indepaneeThe prior distribution ok
reflects a belief thak,, andé&,, are uncorrelated. Note that (14)-(18) fully deseri
(11), and assuming that

A: U(0,1) (19)
completes the full prior specification.

The model is estimated with a Gibbs Sampling atgori by iteratively
sampling from conditional distributions (for furtheetails regarding Bayesian
posterior sampling techniques, see Gelman et@03;2Koop, 2003). In particular,
we sample from five conditional distributions:

1) B2, 1,4, X,y
2) = B,I,1,A, X,y
3)T|B,Z,1,A, X,y
4)1|B,I,Z,A,X,.y
5 A|B.ILZ1, X,y

These distributions are straightforward to deriaarf the prior and likelihood
as follows:

P(B M2, 1,4, X, y) U p(B, 1 V2) pP(Bs | V1) p(a,) p(ay, s, s, Ba)
x@ ((FOl)vedy)| XB,Z0 1)

= MTN(Dd, D™, 3 D[0In(y/(y; ~1))]) (20)
where:
1 .. e
D= 1—0cd|ag{vB} +X'(Z*01,)X (21)
_i r -1
d= TocHe ™ X(Z7T Ol;)vedy) (22)
Vg = [150 0/35]" (23)
Mg = [O _20'13 ln(yll(yl _1)) 0’18]’; (24)

We sampleB by first sampling 5, from a univariate truncated normal
distribution and the rest of the parameters froenadppropriate multivariate normal
distribution, given the draw off3,;. Subsequently, we derive the conditional

distribution for 2 as:
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PEIB.I1,A,X,,y) 0 pE) @, (T Ol )vedy)| XBEO1,)
= W, ((1, + €8)™) (25)
e=y-[x0, X,0,] (26)

where W, (S) denotes aninverted Wishartdistribution with /7 degrees of

freedom and scal&, which can be easily sampled form using a stansiatiktics
software package. Sampling;,, J,) , on the other hand, is not trivial and requires
aMetropolis-Hastingstep. That is, the conditional distribution:

P(Vi: V2 1B.Z,1,A, X, y) O p(yi v2) P(Bo 12) P(Bs | 14)

*@. (MOl )vedy)| XB, 20 1;) (27)

does not have a closed form that can be easilylsanfyom. Hence, we construct a
jumpingdistribution to sample candidate draws from angblegnan accept/reject
decision rule. A reasonable jumping distributionthis problem is:

3041 =T | =Gy Wiy 1) T (| =+ 282 (), — [W | ~0,0)(28)
Wi Wi
where (a,, ,@1) andW are the 3SLS estimates and asymptotic covariaratexm
respectively, from the regression:
g=ay,+tv, (29)
& =By, *V, (30)
where [g e,]=e from (26). Note thatJ();,),) is not proportional to the

mutivariate truncated t distribution, althoughsitguite similar. We decide whether
or not to accept the new draws with the followimggedure:

o[ 70 73 VN VA0 73

1) calculated = o 1Id,ygld 3 1Id’ygld) , where
p(y, V> PO A(ys, v, [

2) sampleu: U(0,1)

3) accept(),", y,°") if u< @

Finally, we sample the remaining parameted@,...,IT,)l, from the

following distributions:

I IB,F,5,A, X,y Beroulli(0,) (31)

Al 1. BetaTl +1,T(1-1)+1) 2§3
P A B, (VT [X10, X5, 40, 1+ DI (33)

A @xz(ytr' | [X’151X'2 | :152]’ IT !z_l)"' (1_/])@x2(ytr’ I [X’151 Xlz 1 :052]1 ITvz_l)

The above MCMC algorithm was run for 70,000 iterasi, with the first
20,000 draws discarded lsrn-in. The remaining 50,000 draws are assumed to be
sampled from the joint posterior distribution amd aummarized in table 2. Note
that the marginal posterior distributions describgdhe draws are fairly close to
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the distributions of the ML estimates reported loytér (1983). In fact, the only
significant difference appears in the estimatgBpf our main parameter of interest.

In particular, note that the posterior distribution asserts
Pr(5,<0.568 X_,,y)=0.25%, which is the region containing the MLE

estimate,BA’3 =0.545. This difference can be, at least in part, exgdify the

parameter restrictions imposed in the Bayesiameasibn, since we are explicitly
forcing ;>0 and |a;|>1. Meaningful interpretation of the difference is

difficult, however, since interpretation q@s is unclear given thatr, = —0.800
implies firms areminimizingprofits, if an equilibrium in the given model etss

Table 2
Estimation Results

Summary of Posterior Distributiop(a,f3 | X \Y)

mean std| min 0.25% 20% 40% median 60% 80% 97.5% max
dev

a, 7965 2679 3698 2696 569 729 7973 862921310 13211 17380
a, -1160 0083 -1509 1337 -1232 -1175 -1153 13#. -1085  -1021  -1.000
a, 0387 0127 087 0631 0494 0419 0387 3550. 0281 0137 0110
B, 4019 2670 -14251 9259 6232 4683 4033 3703 -1782 1174 7495
B, 0259 0026 0194 0216 0237 0248 0.255 0263 83 02 0317 0335
By 0198 0044 043 0288 0234 0208 0197 1870. 0162 0116 0040
B, 0227 0059 0483 0345 0276 0241 0226 2110. 0178 0115 0.002
B 0390 0048 0610 0488 0429 0401 0389 37A0. 0350 0300 0223
B4+ 0132 0117 0552 0328 0221 0165 0141 1160. -0055 0.098 0.731

Bs 0624 0030 0495 0568 0599 0616 0624 0631 49 06 0684 0.758

In addition to the parameters reported in tablarl(table 3 in Porter, 1983),
it maybe of interest to examine the posterior pbiliiges of I,,...,1;. Figure 1

depicts the predictedl, as well as the posterior probabiliBr(l, =1| X_,,y) for

each period in the sample. Note that our predistiare fairly consistent with the
predictions derived by Porter (1983) using the &e#lgorithm. Another point of
interest evident from the figure is that in theefaperiods with more frequent
(predicted) regime switches, the posterior uncetyaiis relatively higher.
Incidentally, this is also the period of highestrked concentration (8 firms), which

91



perhaps indicates that competition not only makesperative behavior more
difficult in general, but also makes it more ditfitto detect.

|7 NN
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— plliy)
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period (t)

Fig. 1.Predicted |, and Posterior ProbabilitiesPr(l, =1| X_,,Y)

3.Inference

3.1.The “collusive” regime sets static monopoly prices
If the collusive regime sets static monopoly priadben we should observe

that A =In(y,/(1-y,)) — B; =0. While, “hypothesis testing” doesn’t exactly make
sense in the Bayesian context, we can perform alogous exercise by examining
the posterior distribution of\ , which is easily approximated using the simulation
draws. Specifically, we can examine t86% Highest Probability DensityHPD)
of A and check whetheA =0 lies in the posterior HPD. Constructing9%%
HPD given draws of\ is straightforward using the following procedure:

1) approximate the support @f(/A | X_,, y) with a fine grid of points\, ;

2) approximate the posterior density at eah using non-parametric

techniques;
3) sort the grid in descending order by densilyes:
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4) the firstm sorted grid points whose densities sunOt85 represent the
95% posterior HPD.

Using this algorithm, we find that tH85% HPD for A is [0.5806, 2.8308],
thus reflecting our posterior belief that it is ilely for the collusive regime to
have set static monopoly prices. This confirms Roeter (1983) prediction that
“cooperative period prices exceed those implieccompetitive price setting, but
are less than those consistent with static joilfipmaximizing.” The HPD is
depicted graphically with the shaded region in feg@.

x10™

pPlAIX Ly)

| N

0 1 2 3 4 5 6 7 =] 9
A

Fig. 2.Approximated Posterior Density ar@6% HPD Interval for A

3.2.There is only one regime in the data

This hypothesis can be easily tested using theepostdraws ofl,..., I,

removing the need to examing,. That is, using the simulated draws we can
construct the posterior distribution for the numbef regime changes,

A= th:2| I, -1, |. SinceA is discrete, we can explicitly answer the question
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“What is the probability that no regime changesuved?”, by estimating the
probability Pr(A =0|X_,,y). Table 3 contains the posterior probability mass

function, Pr(A=d|X_,y). Clearly, our posterior belief asserts that

Pr(A =0]X_,,y)=0. In fact, we conclude that at least 12 regime gkan

occured during the observed period, with the mosibgbility around 22-24 regime
switches. Furthermore, note the fact that the pmafvily favors an even number of
regime change is consistent with the posterior iptieshs that test period began
and ended with cooperative regimes.

4.Conclusion

The Bayesian procedure and analysis describecipdper compliments the
empirical analysis of dynamic oligopoly structufePorter (1983) by incorporating
significant information into the estimation proceeland offering a more extensive
inference. In addition, the Bayesian framework ayextended to accommodate a
more robust econometric model. For example, itassfble to estimate a similar
model without the strict imposition of particularnictional forms of supply and
demand.

Consider, for example, the type of market demasdrasd in the model. The
constant demand elasticity reflects a CES utilipction for therepresentative
consumer, which may be regarded as quite residtithe sense that even if we
accept that each consumer exhibits a CES utiligyjnidividual demands would not
aggregate to a constant elasticity market dematessieach consumer has exactly
the same preferences. However, modelling a demamctibn without a constant
elasticity (e.g. quasi-linear utility) is extremedjfficult. Even if we provide a
better justification for the alternative market derd, a constant elasticity of
market demand is a crucial assumption in the aggi@y of individual firms’
pricing decisions. Thus, changing the elasticityhef demand curve also affects the
industry supply curve. It is possible, in that cadet the new demand/supply
specification might entirely explain market pridactuations in terms of demand
shifts or market structure changes (e.g. entryeit).

Even if we were able to generalize the functiomaht of the demand curve
in a way that nested several possible demand spaaihs, including constant
demand elasticity, estimation through Maximum Lilkebd of this type of model
would be difficult. Bayesian Model Averaging, oretlother hand, allows for a
straightforward way of incorporating different typef models, even those that
cannot be nested. Such procedures, therefore, eaadily used to obtain more
robust estimates.
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Table 3
Posterior Probability Mass Function Pr(A=d | X_,,y)

value Pr value Pr value Pr
12 0.0003 24 0.1896 36 0.0049
13 0.0000 25 0.0018 37 0.0001
14 0.0064 26 0.1512 38 0.0023
15 0.0001 27 0.0011 39 0.0001
16 0.0285 28 0.1055 40 0.0010
17 0.0004 29 0.0008 41 0.0000
18 0.0744 30 0.0602 42 0.0003
19 0.0009 31 0.0004 43 0.0000
20 0.1376 32 0.0309 44 0.0001
21 0.0012 33 0.0003 45 0.0001
22 0.1856 34 0.0129 46 0.0001
23 0.0014 35 0.0001 48 0.0001
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